Proximinality and Diametrically Maximal Sets in $C(K)$

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diametrically complete sets in Minkowski spaces

We obtain a new characterization of the diametrically complete sets in Minkowski spaces, by modifying two well-known characteristic properties of bodies of constant width. We also get sharp inequalities for the circumradius and inradius of a diametrically complete set of given diameter. Strengthening former work of D. Yost, we show that in a generic Minkowski space of dimension at least three t...

متن کامل

Strong proximinality of closed convex sets

We show that in a Banach space X every closed convex subset is strongly proximinal if and only if the dual norm is strongly sub differentiable and for each norm one functional f in the dual space X∗, JX(f) the set of norm one elements in X where f attains its norm is compact. As a consequence, it is observed that if the dual norm is strongly sub differentiable then every closed convex subset of...

متن کامل

Some results on maximal open sets

In this paper, the notion of maximal m-open set is introduced and itsproperties are investigated. Some results about existence of maximal m-open setsare given. Moreover, the relations between maximal m-open sets in an m-spaceand maximal open sets in the corresponding generated topology are considered.Our results are supported by examples and counterexamples.

متن کامل

On Proximinality of Convex sets in Super Spaces

In this paper, we show that a closed convex set C of a Banach space is strongly proximinal (proximinal, resp.) in every Banach space isometrically containing it if and only if C is locally (weakly, resp.) compact. As a consequence, it is proved that local compactness of C is also equivalent to that for every Banach space Y isometrically containing it, the metric projection from Y to C is nonemp...

متن کامل

Proximinality and co-proximinality in metric linear spaces

As a counterpart to best approximation, the concept of best coapproximation was introduced in normed linear spaces by C. Franchetti and M. Furi in 1972. Subsequently, this study was taken up by many researchers. In this paper, we discuss some results on the existence and uniqueness of best approximation and best coapproximation when the underlying spaces are metric linear spaces. A new kind of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Asian Journal of Mathematics

سال: 2010

ISSN: 1093-6106,1945-0036

DOI: 10.4310/ajm.2010.v14.n3.a3